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In this paper, we put in Part I an extended abstract for work on extending
differential programming using the techniques of synthetic differential geometry
and tangent categories. In Part II we summarize results to give evidence of the
work described in Part I.

Part I

Extended Abstract
This paper gives an interpretation of a simple differential programming language
(over finite dimensional R vector spaces), into a setting derived from synthetic
differential geometry (SDG). The main theorem of this paper is Theorem 5.6,
where we establish that there is always an interpretation of our simple differential
programming language into a category of partial maps of a well-adapted smooth
topos that preserves the derivative and all the control structures of the differential
programming language. This shows that manifolds and internal homs (for
the space of total smooth functions) can be consistently added to differential
programming languages. To establish this theorem, we need to combine and
extend various pieces of categorical structure related to categorical models of
differentiation and partial maps.

In section 1, we introduce the simple differential programming language,
which was based on Plotkin’s differential programming language, and discuss
the places where using partial maps is necessary. In section 2, we introduce the
categorical framework we use for partial maps: join restriction categories; in this
section we prove Lemma 2.2 which is crucial to this paper – it will allow us to
use join restriction structure in the category we build from SDG. In section 3 we
introduce the categorical framework we use for categories of smooth, partial maps,
called differential restriction categories. In this section, we prove Proposition
3.2 which shows that differential join restriction categories are sufficient for
giving a sound interpretation of differential programming that preserves the
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interpretation of control structures (loops and branching mechanisms) as well as
the derivative. We also introduce restriction tangent categories which generalize
differential restriction categories, and show how to extend the interpretation of
our differential programming language by showing that any tangent and join
restriction preserving functor will preserve the intepretation of the language
(Proposition 3.3). In section 4, we turn our attention to well-adapted models of
SDG, by considering the partial map category of a well-adapted smooth topos,
and prove Theorem 4.4. This theorem turns out to be a bit disappointing.
While we can extend differential programming into the topos E , we find that the
derivative may not be preserved: that is, when we restrict to the microlinear
objects, we will not in general have a tangent restriction category, and so we
cannot apply Proposition 3.3. In section 5, we refine the partial map category
of the smooth topos by considering a more refined notion of partiality, where
partial maps are not defined on arbitrary subobjects, but rather formal étale
subobjects. Such partial map categories of smooth toposes do not appear to have
been studied. We show that we can obtain a join restriction tangent category
from this setting (Lemma 5.2), and that we have a situation where Proposition
3.3 can be applied, and this is proven in Theorem 5.6. Thus we have given
an intepretation of differential programming into a setting constructed from
SDG. Moreover, we now have manifolds as objects, as well as internal homs
of smooth total functions. In some models this implies that we have sequence
spaces without any finiteness constraints, and thus we can model recurrent neural
networks as well.

Differential programming is an emergent programming paradigm that makes
use of a derivative that can be applied to any part of a program which represents a
smooth function Rn −→ Rm. The derivative can be used to optimize parameters
of a program and facilitates deep learning [2] [1]. This generalizes the use of the
derivative to optimize and train a neural network as a subroutine, as it allows
training parameters of any subroutine. Typically differential programming makes
use of automatic differentiation, where the derivative of a function is computed
alongside the function, as there are often efficiency increases in doing so.

The methods being used for automatic differentiation are well established,
and recently have drawn attention from the programming languages community,
who are seeking to understand how a differentiation operator should behave in a
programming language. One such investigation was exposited in MFPS 2018
by Plotkin [38], whose work this paper builds on. Plotkin isolated the features
of differential programming and defined a simple programming language with
if-then-else and while control constructions and a differential operator baked
right into the syntax 1. To obtain a correctness result, Plotkin provided an
interpretation of his language into the category of functions Rn −→ Rm that
are smooth when restricted to an open subset (denoted SmoothP). Using this
interpretation, and an assumption used frequently in the automatic differential
programming community that the guards of the control structures are continuous

1Plotkin used the reverse derivative, where this paper will use the forward derivative. The
reverse derivative may be transformed into the forward derivative by transposition.

2



[3] [29], Plotkin proved that the tranformations of programs that push the
derivative into the control structures if-the-else and while are sound. Plotkin
also pointed out that there is a desire to extend differential programming
languages with features that make manifolds into datatypes and that allow
function spaces as domains (i.e. allows higher-order functions).

This paper sets out the following path towards understanding how to add
manifolds as datatypes and allows for higher-order functions. We first identify
the categorical structures used in Plotkin’s interpretation into in SmoothP. Once
we have identified these structures, we will construct a a functor SmoothP −→ E
where E is a category that has our desired features. By identifying the categorical
structure used in SmoothP for Plotkin’s interpretation, we can then ensure that
our functors preserves all the structure needed so that the model in SmoothP
carries to E . Then we will build such a category E and a functor SmoothP −→ E .

First we will identify categorical structure that may be used to interpret
if and while, and for this we will use join restriction structure. Partiality
plays a crucial role to the interpertation of if and while. While loops may fail
to terminate, and hence can provide an immediate source of partiality. The
assumption of continuity imposed on guards forces another source of partiality:
as guards are valued in {T, F} with the discrete topology, for a guard to be
continuous is to require that the preimages of T and F be disjoint open sets; thus
the guard must be partial or trivial.

The categorical structure we will use for if and while is join restriction
structure. Restriction categories were introduced in [11] as abstract categories
of partial maps. Categories of partial maps play a major role in topos theory;
indeed, a topos can be defined as a Cartesian closed category with finite limits

and a partial map classifier. In Set a partial function A
f−−→ B is a total

function on some subset A′ ⊆ A. More generally, in any topos a partial map

A
f−−→ B is a span A

m←−− A′
f−−→ B where m is a monic (up to equivalence),

and composition is pullback. It was then realized that the restriction to a topos
and all monics is not necessary; a category of partial maps makes sense with
respect to any class of monics M that is closed to composition and pullback
(called dominions [39] and domain structures [36]). Such categories of partial
maps are always partial order enriched (the ordering being essentially, more
defined), and the isolation of the order for understanding partiality was used
in [17]. However the order used by [17] is not enough to ensure that there is
an underlying category of partial maps. The categories using partial orders to
formalize partiality were a generalization of an earlier attempt using [37] called
dominical categories. Dominical categories realized the domain of definition

of a map A
f−−→ B as an idempotent A

f−−→ A that is a partial identity and
defined iff f is. Restriction categories directly axiomatize the behaviour of these
idempotents that represent the domain of a map [11]. Moreover, restriction
categories allow for a completeness theorem with respect to categories of partial
maps; every restriction category where restriction idempotents split is precisely a
category of partial maps, and hence every restriction category fully and faithfully
embeds (by the idempotent splitting) into a category of partial maps.
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It is no surprise that restriction categories are connected to logic, due to
their ties to topos theory. Every restriction categories comes equipped with a
fibration into meet semilattices. An extension of this small fragment of logic
to distributive meet-join lattices is given by join restriction categories [25] and
[14]. Join restriction categories were used to model iteration of stack machines in
[15] and [10], and the approach we give to modelling while and if is based on
the more general approach of modelling iteration with join restriction structure.
Thus, we use join restriction categories as a model because they capture exactly
the notion of a partial map category, and they have the added benefit of providing
a convenient means to express if and while.

After repackaging the if and while control structures, we will then introduce
the categorical structure used to interpret the derivative, called differential
restriction categories [6]. Differential restriction categories are the partial map
counterpart to Cartesian differential categories [5]. The story behind using
differential categories to model programming languages has precedent.

The differential λ-calculus is a an extension to the λ-calculus introduced by
Ehrhard and Regnier [22] to give a syntactic characterization of the additional
features that the model of the λ-calculus into Köthe sequence spaces [20] and
finiteness modules [21] has. The new feature that the differential λ-calculus
introduced was a formal derivative of λ-terms.

The models of the differential λ-calculus came as coKleisli categories of models
of linear logic. In [6], Blute et al introduced monoidal differential categories to
address what additional features that a model of linear logic is required to have
in order to interpret the differential λ-calculus. Most importantly, one needs
an additively enriched monoidal category, and the linear exponential modality
(!, δ, ε) needs to have a deriving transformation. In this setting, coKleisli maps
have a derivative:

!A
f−−→ B

A⊗!A −−−−−→
D⊗[f ]

B

Which is viewed as

!A
D⊗[f ]−−−−−→ (A( B)

so that the derivative of f at a point is the (best) linear approximation. If the
starting category is monoidal closed, then its coKleisli category is a model of
the differential λ-calculus.

The characterization of models was then expanded in [5] by Blute et al who
introduced Cartesian differential categories to characterize the categories that
arise as coKleisli categories of monoidal differential categories. In a Cartesian
differential category, every map has a derivative:

A
f−−→ B

A×A −−−−→
D[f ]

B

that is linear in its first argument, satisfies the chain rule, and a few other
equational properties of the derivative from differential calculus. These capture
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the category of smooth maps Rn −→ Rm. They also capture the derivative
coming from any Fermat theory [19] and the generalization of Fermat theories to
Fermat modules as in [4]. Thus, the Fréchet derivative on Fréchet vector spaces
gives a Cartesian differential category. The category of convenient vector spaces
and smooth maps with the convenient derivative is also an example [7], and
further this example is closed, and a model of the differential λ-calculus. More
generally the Kock-Lawvere vector spaces of any model of synthetic differential
geometry is a Cartesian differential category (see e.g. [12]), and they were proved
to be a model of the differential λ-calculus in [23].

Differential restriction categories extend the axiomatization of Cartesian
differential categories to the setting of partial maps [6]. The category SmoothP
is a differential restriction category. The category of rational functions over a
ring is a differential restriction category.

Recently, Cartesian differential categories have been directly applied to
aspects of differential programming. For example [41] showed how to obtain a
Cartesian differential category structure on a category of sequences and what are
called causal computations. Another paper in the same spirit uses differentiation
for causal computations and relates the structure directly to recurrent neural
networks [40]; this paper conjectures that the differential used is a differential
restriction category. Plotkin also mentioned that differential restriction categories
may provide a semantics for his language [38].

The interpretation of a differential programming language into SmoothP
is done in a way that the derivative in the language is interpreted into the
differential restriction structure. Thus, we will show that the interpretation of a
simple differential programming language into SmoothP can be repackaged in a
way that only the differential join restriction structure on SmoothP is used.

To do this, we will introduce restriction categories, restriction categories with
partial products, and join restriction categories. We will show that if-then-else
and while may interpreted using join restriction categories. Then we will intro-
duce differential restriction structure, and show that derivatives may interpreted
into the differential restriction structure on SmoothP.

Our goal is to begin an exploration of extending differential programming
languages by extending the interpretation of Plotkin’s language into a setting
with manifolds and function spaces, as Plotkin had indicated that both of
these features would be highly desirable. By understanding how the additional
features of manifolds and function spaces interact with derivatives, we may be
able to provide insight into the subtleties involved with extending differential
programming languages with these features.

For the current paper, we will focus on internal homs of smooth partial maps.
For manifolds, a construction of [24] has given a general construction of manifolds
for any join restriction category. For a differential join restriction category, it
was proved that the manifolds formed from a differential join restriction category
always yields a related structure called a join restriction tangent category, and
there is an embedding of the starting category into the category of manifolds
that preserves derivatives (actually the more general result was proved that one
can form manifolds out of any join restriction tangent category) [12].
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The structure and behaviour of hom-objects between smooth spaces has
been studied extensively in sythetic differential geometry [30]. In synthetic
differential geometry (SDG) one makes use of a topos with additional features
that give it a representable tangent bundle functor [D, ] : E −→ E . The tangent
spaces of this tangent functor do not always form internal modules, and are
not guaranteed to have tangent vector addition for example. One restricts to a
full subcategory called the microlinear spaces of E . The category of microlinear
spaces is closed to limits and exponents, and when E is a Grothendieck topos,
microlinear spaces are a locally presentable, cartesian closed category. In what is
called a well-adapted model, E admits the category of smooth manifolds as a full
subcategory of microlinear spaces in a way that transverse limits are preserved
by the inclusion [18], and the construction of manifolds is preserved [31].

We will thus use well-adapted models of SDG to accomplish our goal of
extending the interpretation of the differential programming language into a
setting with function spaces and manifolds. However, Plotkin’s language uses
partial maps; thus, we must investigate the partial map category of a smooth
topos. The study of the partial map category of a smooth topos appears to be
new, and potentially a bit surprising. In a well-adapted topos, SMan arises as a
full subcategory. However, when one moves to the partial map category, SMan
admits only a faithful embedding. This is because SDG admits new subobjects
of R, and this means there are more partial maps from R −→ R in the partial
map category of E than there were in SMan. We will nonetheless give a faithful
restriction functor that preserves derivatives from SmoothP into the partial map
category between microlinear spaces of a well-adapted model.

To facilitate the above move we will introduce the notion of cartesian join
restriction tangent category. Every differential join restriction category is an
instance of one of these. Then we will show that the partial map category
between microlinear spaces of a smooth topos is one. Finally, we will prove the
existence of a faithful functor carrying SmoothP into the partial map category of
the microlinear spaces of E , in a way that preserves cartesian restriction tangent
structure, and hence it follows that the differential restriction structure is also
preserved. To make this precise we will recall the notion of a restriction tangent
category and some basic facts about them proved in [12]. The partial map
category of the topos is proved to be a partial cartesian closed category, using
the fact that toposes have partial map classifiers. We introduce a condition for
when the partial map category of microlinear spaces is a partial cartesian closed
category.

However, in SDG, one is often not concerned with arbitrary subobjects, but
rather formally étale subobjects. If U ⊆ Rn is an open embedding in SmoothP,
then the inclusion into a well-adapted model is a formally étale subobject of
Rn. The slogan is that the formally étale subobjects are the “well behaved”
subobjects. To make this precise we will use the partial map category with
respect to étale monics. We will see that unlike the case for all monics, the
partial map category of microlinear spaces with respect to étale monics is a full
subcategory of the partial map category of the starting topos. We will show
that there is a faithful embedding of SmoothP into the étale subobject partial
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category; however, we still do not get a full embedding. To ensure that étale
monics are closed to taking joins we have to include an additional axiom from
SDG: the amazing right adjoint axiom. The embedding of SmoothP into this
partial map category also has the property that it preserves the construction of
manifolds. However, function spaces become more subtle. In this setting, we do
have spaces that correspond to total smooth functions, for example total smooth
maps [N,R], but having function spaces of partial smooth maps is equivalent to
asking for E to have an étale subobject classifier. We hope to better understand
étale subobjects classifiers in the future, and leave this for future work.

There are settings other than SDG that extend the category of smooth
manifolds to have function spaces. One such category of generalized smooth
spaces is the category of diffeological spaces. Baez and Hoffnung proved that
diffeological spaces are a category of concrete sheaves on the concrete site of
SMan. Kammar, Staton, and Vakar proposed an interpretation using diffeological
spaces and polynomial functors [28], and thus making use of the locally cartesian
closed structure of diffeological spaces. There is also a notion of tangent space,
and hence tangent bundle for diffeological spaces [8][26]. However, the tangent
space, like in SDG, does not always have addition [33]. Defining a notion of
microlinearity for diffeological spaces seems possible, but may require additional
work to get off the ground, so for the present work we start with SDG. However,
Kammar, Staton and Vakar made use of a category of ω-CPOs as a category of
models of an essentially algebraic theory, and we hope to consider this further in
future work, as this part does not rely on locally cartesian closed structure.

Part II

Results

1 Plotkin’s Language

In this section we describe the syntax for a language for differential programming
in the spirit of Plotkin’s MFPS 2018 talk [38]. This language has a single gener-
ating type, the reals R, and is closed under product types Rn, and importantly
we have if-then-else and while-loops. We will parametrize the language by a
set of function symbols Σ so that we can add function symbols as needed (e.g.
sin, ex,etc).
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The language L is described by the following grammar

L := FunDef∗

FunDef := Ident ( Ident∗ ) := Term

M := x ∈ Var | r ∈ R |
n∑
i=1

M | f(M, · · · ,M) f ∈ Σ

| (M, · · · ,M) | let(x1, . . . , xn) = M inM

| ifM thenM elseM | whileM .M

| ∂M

∂(x1, . . . , xn)
(M) ·M

Subject to the typing rules for a functional language and typing rules for
if-then-else, while, and derivatives in Table 1. We will not develop an
operational semantics here.

We do however need to point out the difference in syntax we use for
if-then-else and while regarding the guards. The if-then-else construct
in differential programming can be nasty if not used carefully: a differentiable
function may be deconstructed using if-then-else in way that the pieces have
poorly behaved differentials. For example:

f(x) = x2

maybe decomposed as

f(x) =

{
x2 x 6= 0

x x = 0

but the derivative of f cannot be recreated by the derivatives of the pieces.
Usually b(x) is seen to take values in {T, F}, but allowing arbitrary logical

connectives over R to build such an element is what can lead to problems. One
way around this is to limit logical connectives to one use of a <, as done in [29].
A more generous solution is to require that b : Rn −→ {T, F} be a continuous
function when {T, F} is given the discrete topology [3]. This is equivalent to
asking that both b-1(T ) and b-1(F ) be open sets in Rn. As b is a function it
also means that these subdomains be disjoint. However, this then is equivalent
to asking that b be a union of b1, b2 where b1, b2 : Rn −→ {T, F} have disjoint
domains and b1(x) is either undefined or equals T and b2(x) is either undefined or
equals F . The only place that predicates are used in this language is for guards
on if and while statements, so their use is to determine open subobjects. This
can be performed equally well by asking for a union of two partial continuous
functions b′1, b

′
2 : Rn −→ 1 where b′1(x) = ? iff b1(x) is defined and equals T and

b′2(x) = ? iff b2(x) is defined hence equals F .
We write the kind of union we have in mind as b′1 ⊕ b′2. For example

if(x > 1) ⊕ (x < −1) then f(x) else g(x)

We are motivated towards this syntax because in a restriction category a
terminal object may only have one total map into it, but many partial maps.
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Γ ` b1, b2 : 1 Γ ` f : A Γ ` g : A

Γ ` if b1 ⊕ b2 then f else g : A

p : A ` f : A p ` b1, b2 : 1

p ` while b1 ⊕ b2 . f : A

Γ, p : A ` f : B Γ ` a : A Γ ` v : A

Γ ` ∂f
∂p (a) · v : B

Table 1: Typing rules for L

Indeed, maps into the terminal object are subobjects. Operationally, this may
be implemented by performing b′1(x) and b′2(x) at the same time, since at most
one of them wil be defined, and then choosing an action based on which one (if
either) returns an answer.

2 Join Restriction Categories

In this section we introduce join restriction categories. Join restriction categories
provide sufficient structure for interpreting the if-then-else statement and while-
loops as done in L. We will prove a lemma that will allow us to put a join
restriction structure on Par(Microl(E)),M) where M is the collection formal
étale monics in the category of microlinear spaces of a model of SDG. This will
be used to give a faithful model of L in the partial map category of the “good”
objects in a model of SDG.

Definition 2.1. A category X has restriction structure [11] there is an

operation on maps X(A,B)
( )−−−→ X(A,A) such that

[R.1] f f = f ;

[R.2] f g = g f ;

[R.3] f g = f g ;

[R.4] h f = hf h.

Restriction categories model categories of partial maps: the restriction f of
f is an idempotent that picks out the domain of definition of a map f . The link
to categories of partial maps is as follows: a restriction category is split when
for every e = e , there is a section retraction pair sr = 1 and rs = e that splits
e. There is a 2-equivalence of categories between split restriction categories and
partial map categories [11].

Every restriction category is partial order enriched. The restriction order
on maps f ≤ g is defined precisely when f g = f . Intuitively, this says that g
restricted to the domain of f is f , but g may be more defined.

Compatibility provides another relation on maps in a restriction category.
We write f ^ g when f g = g f , and say that f, g are compatible. Intuitively
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this says that whenever both f and g are defined, they are equal. This relation
is not an equivalence relation; however, it is reflexive and symmetric.

Suppose {fi}i∈I is a family of pairwise compatible maps. Then the join of
the fi is a map

∨
i∈I fi such that

• fj ≤
∨
i fi for all j;

• if each fj ≤ v then
∨
i fi ≤ v;

• h(
∨
i fi)k =

∨
i(hfik).

We often write the join of two maps as f ∨ g and the join of the empty set
as ∅. Note that ∅ is an absorbing element, and is the bottom of the restriction
ordering; it behaves like the nowhere defined map.

A functor X F−−→ Y of the underlying categories of restriction categories is a
restriction functor when F ( g ) = F (g) . A restriction functor between join
restriction categories is a join restriction functor when F (

∨
i gi) =

∨
i F (gi).

Lemma 2.2. Let X be a restriction category and Y a join restriction category,
and

X J−−→ Y

a full and faithful restriction functor. Then X is a join restriction category and
J preserves joins.

Proof. Suppose {fi}i is a family of pairwise compatible maps A
fj−−→ B in X.

We will show that the join exists. Note that any restriction functor preserves
compatibility as suppose h ^ k then

JhJk = J hJk = J(h k) = J( k h) = Jk Jh.

Thus {J(fi)}i is a family of pairwise compatible maps in Y.
Next, compute the join in Y,

∨
i J(fi). As this map is in the same homset

as each Jfj : JA −→ JB, by fullness there is a map k ∈ X(A,B) such that
Jk =

∨
i J(fi). We will show that k is the join of the fj .

First we must show that fj ≤ k for all j. But this follows for a more general
reason from faithfulness. For any two maps s, t in the same homset in X, Js ≤ Jt
iff s ≤ t. Suppose s, t are in the same homset and Js ≤ Jt. Then Js Jt = Js.
But then Js = Js Jt = J( s t), and by faithfulness s = s t, hence s ≤ t. Then
for this stronger reason, as J(fj) ≤ Jk we have fj ≤ k.

Suppose that v is such that fj ≤ v for all j. But then J(fj) ≤ J(v) for all j.
Hence

Jk ≤
∨
i

F (fi) ≤ J(v).

and again by the stronger reason above, k ≤ v.
Finally, we must show the compatibility with composition.
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Under our proposal,
∨
imfin is the unique element that maps to

∨
i J(mfin).

It suffices by the faithfulness of J then to show that mkn maps to this under J
as well. Note that

J(mkn) = JmJkJn = J(m)

(∨
i

J(fi)

)
J(n)

=
∨
i

(JmJ(fi)Jn)

=
∨
i

J(mfin)

as desired. Thus,
∨
i(mfin) = m(

∨
i fi)n. Thus X is a join restriction category.

We defined the join in X such that

J(
∨
i

fi) = J(k) =
∨
i

J(fi)

thus J preserves joins.

Restriction categories often arise as the partial map category of an M-
category.

Definition 2.3. A stable system of monics on a category X is a class of
monics M such that

1. M contains all isomorphisms;

2. M is closed to composition;

3. M is closed to pullbacks.

We call a category X equipped with a stable system of monics M an M-category.

Note that if m, am ∈M then a will itself be in m as we have the following
pullback diagram

A A′

A B

a

m

am

Every M -category has an associated restriction category:

Definition 2.4. Let (X,M) be an M -category. There is a restriction category
Par(X,M) called the partial map category.

• Objects: Those of X.
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• Morphisms: Equivalence classes of spans (m, f) : X −→ Y

A

X Y

m∈M f

where (m, f) ≡ (n, g) if there is an isomorphism making the following
diagram commute:

A

X Y

B

m∈M f

n

g

α

• Composition: Given (m, f) : X −→ Y, (n, g) : Y −→ Z, they compose via
the following pullback:

C

A B

X Y Z

n′

n∗f

m∈M f

n∈M
g

• Restriction combinator: (m, f) = (m,m).

Associativity follows from the fact that morphisms are only defined up to isomor-
phism.

Lin characterized exactly when an M-category is such that Par(X,M) is a
join restriction category.

Theorem 2.5. [35] theorem 11 An M category X has joins iff

1. For any family of M-subobjects {mi : Ai −→ A} the colimit of its matching
diagram ∪iAi exists.

2. The induced map ∨imi : ∪iAi −→ A is in M;

3. The colimit of 1. is stable under pullback.

In a topos all colimits are stable under pullback because the pullback along
a map is always a left adjoint between the slice categories. To prove the result
one must show that the induced map is in M. Johnstone shows this is the
case for any coherent category [27] Theorem 1.4.3. Thus Par(E ,Monic) is a join
restriction category.
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3 Interpretation into smooth functions

In this section we will provide an interpretation of L into the differential join
restriction category of smooth maps defined on open subsets of Rn. In this
section we will introduce differential join restriction categories, and produce
an interpretation of L into the differential join restriction structure. We will
generalize this to tangent restriction categories in the sequel.

A differential restriction category is a restriction category with partial
products (see [13]) where every object is a total commutative monoid, where the
addition on A×B is given componentwise by addition on A and B, and where
there is a differentation operation:

A
f−−→ B

A×A −−−−→
D[f ]

B

that satisfies the following equations (see [9] for more details).

[DR.1] D[f + g] = D[f ] +D[g] and D[0] = 0;

[DR.2] 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ] and 〈0, g〉D[f ] = gf 0;

[DR.3] D[πi] = π0πi;

[DR.4] D[〈f, g〉] = 〈D[f ], D[g]〉;

[DR.5] D[fg] = 〈D[f ], π1f〉D[g];

[DR.6] 〈〈g, 0〉 , 〈h, k〉〉D[D[f ]] = h 〈g, k〉D[f ];

[DR.7] 〈〈a, b〉 , 〈c, d〉〉D[D[f ]] = 〈〈a, c〉 , 〈b, d〉〉D[D[f ]];

[DR.8] D[ f ] = (1× f )π0;

[DR.9] D[f ] = 1× f .

The differential restriction category SmoothP has objects Rn and arrows
(f, U) : Rn −→ Rm is an m-tuple of arrows (f1, . . . , fm) each from Rn −→ R and
smooth when restricted U −→ Rm where U is an open set of Rn.

The category SmoothP is a restriction category by

(f, U) (v) =

{
v v ∈ U
↑ else

where ↑ means undefined, and its open set is U . Because domains are assumed
to be open, compatible functions are those that agree on the intersection of their
domains. Given a family of pairwise compatible maps (fi, Ui), the join of the
function is

(
∨
i

fi)(x) =

{
fi(x) ∃i.fi(x) ↓
↑ else.

13



This is well defined because of the compatibility assumption - thus this is a join
restriction category.

The category SmoothP has a cartesian restriction structure, where the re-
striction terminal is 1 = R0. There are total smooth maps Rn πi−−→ R and
given m maps (fi, Ui) : Rn −→ R the map ((fi)

m
i=1,

⋂
i Ui) : Rn −→ Rm is unique

such that ((fi)i,
⋂
i Ui)πi = (fi,

⋂
i Ui) = ◦j 6=i (fj , Uj) (fi, Ui), thus giving the

category restriction products. The differential restriction structure is defined by
the Jacobian:

Rn f−−→ Rm
Rn ×Rn −−−−→

D[f ]
Rm

given by D[f ](v, p) := J(f)(p) · v = ∂f(p)
∂p (p) · v. The domain is Rn × U .

Also note that the derivatives are defined equally well “in context” where we
only differentiate with repsect to some of the variables:

V ×Rn f−−→ Rm
V ×Rn ×Rn −−−−−→

DV [f ]
Rm

Now we define an interpretation J K of L into SmoothP. For types we define
JRnK := Rn. For constants r in L we interpret as the number r. For each

function symbol f ∈ Σn we require a smooth map Rn JfK−−−→ R defined on
some domain U . The interpretation is extended to contexts by J.K := 1 and
JΓ, p : V K := JΓK× JV K. We then extend this interpretation inductively to terms
by the following rules.

Proj:

• Jx : R ` x : RK := 1R;

• JΓ, x : R ` x : RK := JΓK×R π1−−→ R;

• JΓ, y : R ` x : RK := JΓK×R π0−−→ JΓK
JΓ ` x : RK−−−−−−−−→ R.

Cut: We denote let p = t inm by m[t/p].

JΓ ` m[t/p] : V K := JΓK
〈1, JΓ ` t : AK〉−−−−−−−−−−→ JΓK× JAK

JΓ, p : A ` m : V K−−−−−−−−−−−−→ JV K.

Flattening:

• JΓ, x : 1 ` m : BK := JΓK× 1
π0−−→ JΓK

JΓ,` m : BK−−−−−−−−−→ JBK;
• JΓ, (p, q),Γ′ : A×B ` m : CK is defined to be

JΓ, (p, q) : A×B,Γ′K ' JΓ, p : A, q : B,Γ′K
q
Γ, p : A, q : B,Γ′ ` m : C

y

−−−−−−−−−−−−−−−−−−→ JCK.

Tuple:

JΓ ` (f1, . . . , fm) : A1 × · · · ×AmK := JΓK
〈JΓ ` fi : AiK〉mi=1−−−−−−−−−−−−→

m∏
i=1

JAiK

14



Fun: JΓ ` f(t1, . . . , tn) : BK is defined to be

JΓK
〈JΓ ` ti : AiK〉−−−−−−−−−−→

m∏
i=1

JAiK
JfK−−−→ JBK

Sums: t

Γ `
m∑
i=1

fi

|

:=

m∑
i=1

JΓ ` fiK

If-then-else:

JΓ ` if b1 ⊕ b2 then f else gK := JΓ ` b1K JΓ ` fK ∨ JΓ ` b2K JΓ ` gK

While:

JΓ ` while b1 ⊕ b2 .fK :=

∞∨
i=0

((
Jq : A ` b1 : 1K Jq : A ` f : AK

)i
Jq : A ` b2 : 1K

)
Differentials: Suppose Γ, p : A ` m : B, and that Γ ` a : A and Γ ` v : A.

Then we interpret
r

Γ ` ∂m
∂p (a) · v

z
as

JΓK
〈1, JΓ ` v : AK, JΓ ` a : AK〉−−−−−−−−−−−−−−−−−−→ JΓK× JAK× JAK

DR
JΓKJΓ, p : A ` m : BK

−−−−−−−−−−−−−−−→ JBK

Lemma 3.1. In any differential restriction category:

1. ∨ifi = ∨i fi

2. 〈∨ifi, g〉 = ∨i 〈fi, g〉

3. ∨ifi + ∨jgj = ∨i,j(fi + gj)

4. Restriction idempotents are linear: if e = e then

D[e] = π0e.

5. Any join that exists is preserved by the differential

D[∨ifi] = ∨iD[fi]

Proof. These may be found in [2.14,2.19,3.4,DR.8,3.21] respectively in [9].

The following semantic theorem shows what is needed to extend our syntax.

Proposition 3.2. Any functor

SmoothP
I−−→ E

into a differential join restriction category E that preserves restriction, partial
products, joins and differential restriction structure preserves the interpretation
of L.

15



Proof. As restriction and joins are preserved, the interpretation of if-then-else
and while are preserved. As partial products are preserved, so is the monoid
structure, hence the interpretation of tuples and sums is preserved. As the
derivative is preserved by I and the differential in L is sent to the derivative,
the interpretation of the differential is preserved.

In the remainder of this section, we will consider a generalization of differential
restriction categories called restriction tangent categories.

Tangent restriction categories are introduced in section 6 of [12]. A tangent
restriction category is a restriction category that has a restriction preserving

functor X T−−→ X and total natural transformations:

T
p−−→ 1 1

0−−→ T T2
σ−−→ T T ◦ T c−−→ T ◦ T T

l−→ T ◦ T

where T2 is the restriction pullack of p along p. This data is subject to certain
coherences (see [12]). In a join restriction category X if X is also a restriction tan-
gent category, then the tangent functor preserves the join: T (∨ifi) = ∨iT (fi) [12]
Proposition 6.15.(ii). Thus, the restriction tangent functor on Par(Microl(E),M)
preserves the joins.

Proposition 3.3. Any functor

SmoothP
I−−→ E

into a Cartesian join restriction tangent category E that preserves join restriction
structure and cartesian tangent restriction structure preserves the interpretation
of L.

Proof. By Proposition 3.2 it suffices to show that the image of SmoothP under I
is a differential restriction subcategory of E ,

In [12] was proved the differential restriction objects of a Cartesian restric-
tion tangent category form a differential restriction category Proposition 6.18.
Any functor that preserves Cartesian tangent restriction structure preserves
differential restriction object structure, and moreover, the derivative between
differential objects is preserved.

In SmoothP, as it is a differential restriction category, regarded as a restric-
tion tangent category, every object is a differential restriction object, hence as
the functor preserves Cartesian restriction tangent structure, it preserves the
differential restriction structure.

Then this result follows from Proposition 3.2.

4 First Extension to SDG

In this section we introduce a basic extension of SmoothP to the partial maps
of a smooth topos, and give a way to extend this to the partial maps between
microlinear spaces.

16



We will introduce the notion of a partial cartesian closed category [36]. We will
then recall that the partial map category of a smooth topos E is a partial cartesian
closed category. We will then recall why the partial map category of a topos is a
join restriction category. We will then show that the partial map category of
the microlinear spaces of a smooth topos, denoted Par(Microl(E)), is a cartesian
restriction category. Finally, we will show that there is a faithful, Cartesian
join restriction functor SmoothP −→ Par(Microl(E)) whenever E is additionally
well-adapted. We record a pair of definitions regarding M -categories:

• An M-category (X,M) is classified when there is a monad M such that
X(A,M(B)) ' Par(X,M)(A,B).

• AnM-category (X,M) where X has products is called a partial cartesian
closed category when the functor

X A×−−−−→ X −→ Par(X,M)

has a right adjoint for each A.

Observation 4.1. If (X,M) is an M-category where X is a cartesian closed
category and it is classified, then it is a partial cartesian closed category.

Proof. Note that Par(X,M) is always a Cartesian restriction category whenever
X has products. Suppose (X,M) is classified by M .

The right adjoint to the functor

X A×−−−−→ X −→ Par(X,M)

is

Par(X,M)
[A,M( )]−−−−−−−→ X

Indeed

Par(X,M)(A×B,C) ' X(A×B,MC) ' X(B, [A,MC]).

Recall the following result from Mulry.

Proposition 4.2 ([36]). Every topos has a partial map classifier forM the class
of all monics. Thus, the partial map category of a topos is a partial cartesian
closed category.

Next, when we take M to be the class of monics in a topos E , Par(X,M) is
always a join restriction category.

Lemma 4.3. Let E be a topos, andM the class of monics in E. Then Par(E ,M)
is a join restriction category.
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Proof. Lin’s theorem 2.5 [35] gives the conditions required for joins. Conditions
1. and 3. hold: as E is a topos, all colimits exist, and the pullback functor is
cocontinuous. Johnstone 1.4.3 [27] shows that the induced map

∨i : ∪iAi −→ A

is monic.

However, now we have to be careful. Par(Microl(E),M) is not known to
be join restriction category: we cannot use Lemma 2.2 because in general
Par(Microl(E),M) is not known to be a full subcategory of Par(E ,M). Indeed,
in general a microlinear object can have non-microlinear subobjects. We will
fix this in the next section by considering a better class of monics. We still
can exhibit tangent structure in this section, and obtain a faithful, restriction
preserving functor from SmoothP; we just will not preserve the interpretation of
if and while until we consider étale monics.

For the last piece of this section, we must introduce the notion of a well-
adapted model of SDG, so that we can exhibit a faithful cartesian restriction
tangent functor

SmoothP −→ Par(Microl(E),M).

A smooth topos E with specified ring of line type R is well adapted model
[30] when

[WAM.1] There is a full and faithful inclusion SMan
ι−→ E ;

[WAM.2] The inclusion has ι(R) = R;

[WAM.3] For any transverse limit limiMi in SMan, ι(limiMi) ' limiι(Mi);

[WAM.4] ι takes open coverings of M to jointly epic families of maps into
ι(M).

There is a fifth axiom that is ofen additionally used. [WAM.5] says that for
every Weil algebra U , [Spec(U), ] is a left adjoint 2.

Now we begin building the interpretation of SmoothP into Par(Microl(E),M).

Theorem 4.4. If E is a well-adapted model of SDG, then there is a faithful
cartesian restriction functor

SmoothP
ιP−−→ Par(Microl(E),M)

Proof. U ⊆ Rn is an open embedding hence a submersion. Then the inclusion
is a monic, and hence may be characterized by the fact that the pullback along
itself is the domain of the monic. But since it is a submersion, this pullback is
transverse in SMan and hence preserved by ι. Thus

ι(U) −→ Rn

2Its right adjoint is often called amazing.
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is monic.
We then define the functor on objects ιP (Rn) := Rn. On arrows:

ιP ((f, U) : Rn −→ Rm) :=

ι(U)

Rn Rm

ι(f)

Again we use that an open inclusion U −→ Rn is a submersion. Thus, the
pullback of any map along it is transverse. As ι preserves transverse pullbacks,
ι(f∗U) ' ι(f)∗ι(U). Therefore, ιP preserves composition, and is a functor. That
it is a restriction functor is immediate. It is faithful because ι is.

Products are transverse pullbacks so ι preserves products.

Thus we have proved that SmoothP may be extended by a faithful, cartesian
restriction preserving functor into a cartesian restriction category that contains
manifolds. Also this functor lands equally well in Par(E ,M) which always
has, additionally, partial function space objects. However, we have not shown
that Par(Microl(E),M) retains these partial function space objects. We give a
condition that characterizes when Par(Microl(E),M) is a partial cartesian closed
category.

Proposition 4.5. Suppose the partial map classifier M has the property that if
X is microlinear, then MX is microlinear. Then Par(Microl(E),M) is a partial
cartesian closed, join restriction category.

Proof. Microl(E) is an exponential ideal of E ; that is, if X is microlinear, then
[A,X] is microlinear for any A. Since MX is microlinear whenever X is, we
have that

[A,MX]

is microlinear for every object A. But then

Par(Microl(E),M)(A×B,X) ' Microl(E)(A×B,MX) ' Microl(E)(B, [A,MX])

completing the proof.

However, such a situation may be hard to obtain due to the following
consequence.

Proposition 4.6. If MX is microlinear whenever X is, then the subobject
classifier is microlinear.

Proof. Consider M1: as 1 is microlinear then so is M1.
Now,

Microl(E)(A,M1) ' Par(Microl(E),M)(A, 1) ' O(A)

where O(A) is the set of restriction idempotents on A. Restriction idempotents
on A are precisely the same as subobjects of A.
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5 Second Extension to SDG

As mentioned in the introduction, in SDG, it is often desired to use étale monics,
over arbitrary subobjects. In this section we form a partial map category using
étale monics instead of all monics, and show that the steps taken above may be
taken with one additional axiom needed: [WAM.5]. We will use the amazing
right adjoint to prove that joins of étale subobjects are again étale subobjects.
We will then refine the main theorem of the previous section, when we take étale
monics as our class of monics, the join restriction category Par(Microl(E),M) is
a restriction tangent category.

We will first introduce the notion of being étale with respect to a class of maps
D. Then in a smooth topos E we will define étale maps relative to a particular
set of maps: the 0 elements of the objects Spec(U) for all Weil algebras U . After
this we will provide lemmas that show the steps taken in the previous section
are closed to étale maps, and we will conclude that there is an extension of
SmoothP into the partial map category of microlinear spaces with respect to
étale subobjects.

Let E be any category with products, and D a class of maps. A map A
f−−→ B

is D-étale when for every j ∈ D and every square of the form:

J ×X M

J ′ ×X N

j×X

h

f

k

∃!.v

if the outer square commutes then there is a unique v making the two triangles
commute.

When the category is cartesian closed, it is straightforward to show that by
“currying” the J and J ′ in the above, D-étaleness can be rephrased by asking the
following diagram to be a pullback ([31] diagrams 1.2 and 1.3).

[J ′,M ] [J ′, N ]

[J,M ] [J,N ]

[j,M ]

[J′,f ]

y

[f,N ]

[J,f ]

It follows for general reasons that D-étale maps form a right orthogonality
class with respect to the generating class j × 1 for j ∈ D. Thus, D-étale maps
are stable under pullback and closed to composition, transfinite composition,
and non-empty products. If E is locally presentable, for example a sheaf topos,
then one can use the small object argument to generate a factorization system,
but pullback stability only requires liftings. It is also easy to show that if we
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take the maps L that are orthogonal to every D-étale map then the intersection
of L and D-étale is the class of isomorphisms, and again, we do not require
factorizations to prove this. See Appendix A.

Let E be a smooth topos, and consider the pointed objects 1
0−−→ J where

J = Spec(U) for some Weil algebra U , and let D be the collection of these base
points. Then a map is formal étale when it is D-étale for this class of maps.

Lemma 5.1. Let E be a representable tangent category. Then formal étale
monics are a stable system of monics.

Proof. Every isomorphism is monic, and and formal étale maps contain all the
isomorphisms as per above. Also the property of being monic and formal étale
is both closed under composition and stable under pullback. Thus formal étale
monics are a stable system of monics.

For the remainder of this section, we will let M denote the class of formal
étale monics.

Lemma 5.2. Let E be a topos model of SDG with the amazing right adjoint
[WAM.5] 3. Then (E ,M) is a geometric M-category; that is, Par(E ,M) is a
join restriction category.

Proof. We wish to show that Par(E ,M) is a join restriction category. Since we
are in a topos, we still know that 1. and 3. From 2.5 [35] we must show that the
∨imi is an étale monic to establish 2. holds.

Let J = Spec(U). Then we must show that

[J,∪iAi] [J,A]

∪iAi A

[J,∨imi]

p p

∨imi

is a pullback using the alternate characterization of formal étale.
Since we have assumed [WAM.5] has the amazing right adjoint, then we

know that [J, ] is a left adjoint, hence cocontinuous. Rewrite [J,∪iAi] as ∪i[J,Ai]
using the fact that [J, ] is cocontinuous. We also then have the map across the
top can be rewritten as ∨i[J,mi]. But then we have a colimit of a diagram of
pullbacks along a single map p, and pullback along p is is cocontinuous because
we are in a topos, hence the colimit of the pullbacks is the pullback of the
colimits. Thus, the diagram is a pullback.

This then tells us that ∨imi ∈M once all the mj ∈M. Therefore, Par(E ,M)
is a join restriction category.

As microlinear spaces are a complete category, and closed to limits in E ,
they inherit a stable system of monics by the formal étale monics between
microlinear spaces. In fact, formal étale monics give a join restriction structure
on Par(Microl(E),M).

3According to Johnstone 1.4.3, we could alternatively work in a Cartesian closed, coherent
category with the amazing right adjoint
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Lemma 5.3. For any smooth topos E, the category Par(Microl(E),M) is a join
restriction category. There is a full and faithful join restriction embedding

Par(Microl(E),M) −→ Par(E ,M).

Proof. First we show that there is a full and faithful restriction embedding.
The embedding sends a span (m, f) in Par(Microl(E),M) to the same span in
Par(E ,M). Faithfulness is immediate.

For fullness, let A,B be microlinear, and suppose that there is a span

A
m←−− A′ f−−→ B in Par(E ,M) with m an étale monic. Then ([31] Proposition

2.3) says that an etale subobject of a microlinear space must be microlinear,
thus A′ is microlinear. But then the span is in Par(Microl(E),M) hence the
embedding is full.

Then use Lemma 2.2, to show that Par(Microl(E),M) is a join restriction
category and that the embedding preserves joins.

Note that the full and faithfulness of the embedding implies a strong feature:
the embedding is a hyperconnection in the sense of [16]. Thus the lattices
of restriction idempotents of any object in the embedding is the lattice of
restriction idempotents in Par(Microl(E),M); thus, the local logic is the same in
both categories.

Now we embed SmoothP into Par(Microl(E),M).

Theorem 5.4. If E is a well-adapted model of SDG that [WAM.5], then there
is a faithful join restriction functor

SmoothP
ιp−−→ Par(Microl(E),M)

Proof. Previously we noted that for an open subset U ⊆ Rn, the image under
iota ι(U) ↪→ Rn is a monic. Kock strengthens this: ([30] Theorem 3.4) showed
that for every open subset U ⊆ Rn, the image of the inclusion under ι

ι(U) ↪→ ι(Rn) ' ι(R)n

is a formal étale monic. Also, ι(R) is the ring of line type R in E
Then, the functor

SmoothP −→ Par(Microl(E),M)

is defined as it was for the case whereM is all monics: on objects ιP (Rn) := Rn.
On arrows:

ιP ((f, U) : Rn −→ Rm) :=

ι(U)

Rn Rm

ι(f)

Also, since we know that for U ⊆ Rn the image under the embedding is an
étale monic, this is well defined, and easily verified to be a faithful restriction
functor.
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For join preservation, as SMan has all idempotents split, then all restriction
idempotents split. Then SMan with partial maps may be given the structure of
the partial maps of an M category, and Lin [35] show that joins are constructed
from pushouts of matching diagrams. Then let U1, U2 ⊆ Rn be open. Thus the
inclusions are open embeddings and their pullback is transverse. The pushout of
the matching diagram:

U1 ∩ U2 U2

U1 U1 ∪ U2

p

is the union of U1 ∪ U2. Note that the maps U1, U2 −→ U1 ∪ U2 are submersions,
and the intersection of U1, U2 in Rn is the intersection of U1, U2 in U1 ∪ U2.
Thus the diagram is actually a transverse pullback, and ι preserves it. But that
pullback in a topos is the colimit of the matching diagram, and hence ι preserves
joins.

Next we show that M is a tangent system of monics, thus we have that
Par(Microl(E),M) is a restriction tangent category.

Proposition 5.5. For any well adapted model E andM the formal étale monics,
Par(Microl(E),M) is a restriction tangent category.

Proof. In a representable tangent category, hence any well adapted model E , the
tangent functor is continuous, so it preserves all pullbacks. Next if m is monic,
as the tangent functor preserves pullbacks [D,m] is monic.

It remains to show that [D,m] is formal étale.

Suppose A
m−−→ B is étale, then by the alternate characterization of étale,

the following square is a pullback.

[D,A] [D,B]

A B

[D,m]

p
y

p

m

We will first show that the following is a pullback.

[D, [D,A]] [D, [D,B]]

[D,A] [D,B]

[D,[D,m]]

p p

[D,m]
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Note, the following square is a pullback as [D, ] is continuous.

[D, [D,A]] [D,B]

[D,A] [D,B]

[D,[D,m]]

[D,p] [D,p]

[D,m]

But the above pullback square can be factored using the canonical flip involution
c as:

[D, [D,A]] [D, [D,A]] [D, [D,B]] [D, [D,B]]

[D,A] [D,A] [D,B] [D,B]

c

[D,p]

[D,[D,m]]

p p

c

[D,p]

[D,m]

A straightforward proof shows that as the outer square is a pullback, and c is an
isomorphism, that the middle square is a pullback. But then, by the alternate
criteria for formal étale, [D,m] is formal étale.

Then by Theorem B.2., we have that Par(Microl(E),M) is a tangent restriction
category.

We now extend Theorem 5.4 to show that the tangent structure is lifted.

Theorem 5.6. If E is a well-adapted model of SDG that satisfies the amazing
right adjoint, then there is a faithful and conservative, tangent and join restriction
functor

SmoothP
ιP−−→ Par(Microl(E),M).

Proof. The proof that functor is a faithful, cartesian restriction functor is given
in Theorem 5.4. That the functor reflects isomorphisms, suppose a partial map

Rn ⊃ ι(U)
f−−→ Rm is invertible, then the partial map is in fact total, and we

have Rn = ι(U), and the partial map is just the total map Rn ι(f)−−−→ Rm; note

that the inverse of f is also total, hence there is some total map Rm g−−→ Rn

that inverts ι(f) But since E is a well-adapted model, ι is full and faithful on
total maps (i.e. on E ), thus there is some g0 such that ι(g0) = g and hence g0

inverts f .
For the preservation of the tangent bundle: In the proof of [30] Theorem

4.1, Kock shows that ι commutes with the tangent bundle on open subsets
of Rn. That is, if U ⊆ Rn then ι(TU) ' T (ιU) ≡ [D, ιU ]. But ι(TU) '
ι(Rn × U) ' Rn × ι(U). Finally [30] Theorem 3.3, we have that ι commutes
with the derivative: ι(D[f ]) = D[ι(f)], and more generally ι(T (f)) = [D, ι(f)].
Thus the image of the T (f) under ιP is

Rn × ι(U)

Rn ×Rn Rm ×Rm

ι(T (f))

24



which is the same (by the above) as

[D, ι(U)]

Rn ×Rn Rm ×Rm

[D,ι(f)]

Note the above are in the same equivalence class as partial maps; thus

ιP (T (f)) = T (ιP (f)).

Thus ιP preserves restriction tangent structure.
The join preservation is also given by Theorem 5.4.

For the partial cartesian closure of partial maps between mircolinear spaces
with respect to all monics, we gave a condition for when it is an exponential
ideal of the partial map category of the starting topos. The argument we made
depended on having a partial map classifier in any topos. When we move to
formal étale maps, the étale subobject classifier in the topos is not currently
known to be microlinear.

We will show that if one has an étale partial map classifier M and has the
property that for any microlinear X that MX is microlinear, then partial maps
between microlinear spaces have a partial cartesian closed structure.

Proposition 5.7. Suppose the partial map classifier satisfies the property that
MX is microlinear whenever X. Then Par(Microl(E),M) is a partial cartesian
closed, join restriction tangent category.

Proof. The same as before.

As before, we get a notion of étale subobject classifier. However, as étale
subobjects are more well behaved, it seems more likely an étale subobject
classifier will be microlinear.

Proposition 5.8. If the partial map classifier M has the property that MX is
microlinear whenever X, then there is an étale subobject classifier ΩE and ΩE is
microlinear.

Proof. As before, consider M1. As 1 is microlinear so is M1. Next note

Microl(E)(A,M1) ' Par(Microl(E),M)(A, 1) ' O(A)

where O(A) is the restriction idempotents on A. But restriction idempotents on
A are the precisely étale subobjects of A.

We should remark that the embedding SmoothP −→ Par(Microl(E),M) is
never full. There are new, non-classically constructible objects in E .
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Observation 5.9. The embedding

SmoothP
ιP−−→ Par(Microl(E),M)

is not full.

Proof. There is an object

D∞ := {d ∈ R | dk = 0 for some k}

The object D∞ is a subgroup of (R,+, 0); that is, it is closed under addition
and subtraction. Then note that the map

D∞ ×R
α−−→ [D,D∞]

defined by
α(a, b) := λd.db+ a

is invertible. First note that it is well defined. As a ∈ D∞ by assumption and
db ∈ D∞ becasue (db)2 = 0 and D∞ is closed to addition, α is well defined. Given

a map f : D −→ D∞ extend the codomain to R: D
f−−→ D∞ ↪→ R. Then there

is a unique b ∈ R such that f(d) = f(0) + db ∈ D∞; in particular f(0) ∈ D∞.
Then the inverse to α is α−1(f) = (f(0), b). Thus [D,D∞] ' D∞ × R. But
then,

D∞ ×R R×R

[D,D∞] [D,R]

D∞ R

π0

' '

π0

p p

is a pullback square, hence D∞ is an étale subobject of R. This means that the
partial map

D∞

R R

is in Par(Microl(E),M) but is not the image of the embedding.

6 Future work

First, we would like to clean up and finish this current work, and consider more
deeply the use of ω-CPOs discussed by [28].

One aspect of this paper we find particularly interesting is the subtleties
involved in finding spaces of smooth partial functions between microlinear
spaces of models of SDG. We have all spaces of total smooth functions between
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microlinear spaces, such as [R,R] and [M,N ] for any manifolds M,N , but we
do not currently have a model with function spaces of smooth partial maps. If we
use all monics, to have a partial cartesian closed category on microlinear spaces
seems to require that the subobject classifier be microlinear, and this is quite a
surprising requirement. It is not known whether this is possible. The ability to
use étale subobject classifiers might shed some light onto the subtleties involved
in defining spaces of smooth partial functions. We also find this a fascinating
opportunity for continued research because étale subobject classifiers do not
seem to have been studied.

This subtlety might not be too surprising. Partial cartesian closed categories
are much closer to toposes than ordinary cartesian closed categories due to
partial map classifiers providing a subobject classifier, and thus in some sense is
a much stronger requirement.

A Lifting Systems

This section was inspired by the notion of weak factorization system 4. For our
purposes, we do not need the ability factor maps; we show that certain properties
like pullback stability follow from the weaker notion of having classes of maps
that admit solutions to lifting problems against each other.

Let X be a category. A lifting problem is a square:

· a //

l

��

·
r

��
·

b
// ·

We say that l has a left lifting problem and r has a right lifting problem.
A solution is a map d such that

· a //

l

��

·
r

��
·

b
//

d

@@

·

commutes. We write l ⊥ r, and we say that l is perpendicular to r.
We also write L ⊥ R if L and R are classes of maps such that every l is

perpendicular to every map in R. We write L⊥ = {r ∈ X1 | ∀l ∈ L. l ⊥ r}, and
we say L⊥ is maximally right perpendicular to L. We write ⊥R = {l ∈ X1 | ∀r ∈
R. l ⊥ r}, and say that ⊥R is maximally left perpendicular to R.

Definition A.1. An antitone Galois connections between posets A,B is two

maps A
f−−→ B and B

g−−→ A such that

4For an introduction to weak factorization systems, see https://pdfs.semanticscholar.

org/e73e/6224fb406575d3f30c2ebcd3cbbf10b13541.pdf.

27

https://pdfs.semanticscholar.org/e73e/6224fb406575d3f30c2ebcd3cbbf10b13541.pdf
https://pdfs.semanticscholar.org/e73e/6224fb406575d3f30c2ebcd3cbbf10b13541.pdf


1. Antitone: a < a′ implies f(a′) < f(a) and b < b′ implies g(b′) < g(b).

2. Galois Inv: a < g(f(a)) and b < f(g(b)).

It is a standard result that, regarding the posets as categories, a Galois
connection induces an adjoint equivalence on the subsets f(A) and g(B).

Lemma A.2. If (f, g) : A −→←− B is a Galois connection, then f(A) ' g(B)

Proof. We know f(a) ≤ f(g(f(a))) by definition. We also know a ≤ g(f(a))
by definition, and since f is antitone by definition, we have f(g(f(a))) ≤ f(a).
Thus, f(a) = f(g(f(a))). Similarly, g(b) = g(f(g(b))).

Lemma A.3. ⊥( ) and ( )⊥ form an antitone Galois connection (connexion)
on the class of maps in a category.

Proof. First, suppose that A,A′ are classes of maps with A ⊆ A′. Then A′⊥ ⊆
A⊥, since let f ∈ A′⊥, then l ⊥ f for every l ∈ A′, and since A ⊆ A′, l ⊥ f for
every l ∈ A. Similarly, ⊥( ) is order reversing.

Next, we have that A ⊆ (⊥A)⊥. Left f ∈ A. Then we must show l ⊥ f for
every map l ∈ ⊥A. But the maps in ⊥A are chosen to be the ones that are left
perpendicular to everything in A, including f . Thus, f ∈ (⊥A)⊥.

Similarly, B ⊆ ⊥(B⊥).

It follows from the general result about Galois connections, that ⊥A =

⊥((⊥A)⊥) and A⊥ = (⊥(A⊥))⊥. Thus, for any two classes of maps (L,R) with
L = ⊥R and R = L⊥, we have immediately that L = ⊥(L⊥) and R = (⊥R)⊥.
Then we can express (L,R) as

(L,R) = (⊥R,L⊥) = (⊥R, (⊥R)⊥) = (⊥(L⊥), L⊥)

Definition A.4. A lifting system in a category X is two classes of maps L,R
such that L = ⊥R and R = L⊥.

Lemma A.5. In a lifting system, L,R are closed to composition.

Proof. For L: suppose l1, l2 ∈ L. To show that l1l2 ∈ L it suffices to show that
there is a solution to any lifting problem against an R map. Then obtain a
problem:

·
f
//

l1

��

·

r

��

·
l2

��

d1

@@

·
g
//

d

GG

·

Then since l1 ∈ L we have a d1 such that l1d1 = f and d1r = l2g. Then we
have a lifting problem for l2 so there is a d such that dr = g and l2d = d1. Then
l1l2d = l1d1 = f hence l1l2 ∈ L.
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Lemma A.6. If (L,R) is a lifting system, then

1. The nonempty product of R maps is an R map;

2. The nonempty coproduct of L maps is an L map.

Proof. Let r1, r2 ∈ R. Obtain a lifting problem for r1 × r2:

A
f
//

l

��

B × C

r1×r2
��

D
g
// E ×H

Then this lifting problem devolves into two lifting problems:

A
fπ0 //

l
��

B

r1

��

D
gπ0

// E

A
fπ1 //

l
��

C

r2

��

D
gπ1

// H

The first then has a solution d1 and the second has a solution d2. Then,
〈d1, d2〉 is a solution to the original problem.

The result for coproducts is dual

Now for a categorical interlude. Two maps f, g are called jointly epic if
gh = gk and fh = hk implies h = k.

Given a pushout diagram (a span):

A

b

��

c

��

B C

A weak pushout is an object B ∧A C together with injections B
in1−−−→ B ∧A C

C
in2−−−→ B ∧A C that makes the square commute, and such that for any other

commuting square, there is a q such that the following commutes (note q is not
unique).

A //c //

b

��

C

in2

�� k

��

B
in1

//

h //

C ∧A C

q

##
Q

The dual notion of weak pullback similarly drops the uniqueness condition
for pullbacks.
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Lemma A.7.

1. A pushout is precisely a weak pushout with joint epic injections.

2. A pullback is precisely a weak pullback with joint monic projections.

Proof. The proof is immediate.

Now back to lifting systems.

Lemma A.8. Let (L,R) be a lifting system. Then,

1. The pushout of an L map is an L map.

2. The pullback of an R map is an R map.

Proof. We prove for pushouts. The pullback case is dual. Let the first square be
a pushout of an L map and the second a lifting problem.

·
f
//

l

��

·

l′

��

h // ·
r

��
·

g
//

d

77

·
k
// ·

Then the big square is a lifting problem, and since l ∈ L, there is a solution
d such that ld = fh and dr = gk. Rearrange this to

·

l

��

f
// ·

l′

�� h

��

·
g
//

d 00

·
q

��
·

So that there is a q such that l′q = h and gq = d To show that q solves our
lifting problem, it now suffices to show that qr = k. But now,

l′qr = hr = l′k gqr = dr = gk

so that by joint epicness of l′, g we have qr = k.

Lemma A.9. If (L,R) is a lifting system in X, then L∩R is precisely the class
of isomorphisms in X.

Proof. Suppose h ∈ L ∩R. Then, we can solve the problem of h against itself

·

h

��

·

h

��
·

d

@@

·
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Thus h is an isomorphism.
Suppose α is an isomorphism. Let r ∈ R, and obtain a problem (i.e. the

outer square)

· a //

α

��

·
r

��
·

b
//

d

@@

·

Then, define a solution d := α−1a. Then αd = αα−1a = a and dr = α−1ar =
α−1αb = b. Thus α ∈ L. One can similarly show that α ∈ R.

A map f is a retract of a g when it is a retract in the arrow category: i.e.
there is a square

· s1 //

f

��

· r1 //

g

��

·
f

��
·

s2
// ·

r2
// ·

that commutes and siri = 1.
In a lifting system, L and R are closed to retracts. Suppose l ∈ L and l′ is a

retract of l. Obtain a lifting propblem for l′:

· a //

l′

��

·
r

��
·

b
// ·

Then note, that the outside of all squares commute in the following. And we
obtain a lift d such that ld = r1a and dr = r2g.

·

l′

��

s1 // · r1 //

l

��

· a //

l′

��

·
r

��
·

s2
// ·

r2
//

d

77

·
b
// ·

But then s2dr = s2r2b = b and l′s2d = s1ld = s1r1a = a, so that s2d is a
solution for l′’s problem, hence l′ ∈ L = ⊥R. A dual argument shows that R is
closed to retraction.

Again suppose (L,R) is a lifting system. Suppose sr = 1 and fs ∈ L. Then
we have

·
f

��

·
fs

��

·
f

��
·

s
// ·

r
// ·
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Then, since L is closed under retraction we have f ∈ L. Dually, if sr = 1
and rg ∈ R then g ∈ R.

We summarize this in the following

Remark A.10. If (L,R) is a lifting system, then L,R are closed to retraction.
Further, if sr = 1 and fs ∈ L then f ∈ L, and if rg ∈ R then g ∈ R.

The following is a standard categorical lemma:

Lemma A.11. To given an adjunction F ` G : X −→ Y

A −→ G(B)

F (A) −→ B

is to have two combinators

F (A)
f−−→ B

A
f[

−−→ G(B)

A
g−−→ G(B)

F (A)
g]−−→ B

such that (g])[ = g and (f [)] = f , and such that

(F (h)fk)[ = hf [G(k) and (k′gG(h′))] = F (k′)g]h′

Lemma A.12. Let X,Y be categories and suppose F : X −→ Y, U : Y −→ X are
adjoint functors:

A −→ U(B)

F (A) −→ B

Then l ⊥ U(r) if and only if F (l) ⊥ r.

Proof. The adjunction immediately tells us that lifting problems for F (l) and r
bijectively correspond to lifting problems for l and U(r):

F (A)
f
//

F (l)

��

X

r

��

F (B)
g
// Y

⇔ A
h //

l

��

U(X)

U(r)

��

B
k
// U(Y )

I.e. if we have the first diagram, the second diagram is given by taking h = f [

and k = g[. Conversely, given the second diagram we have the first where f = h]

and g = k].
Now, suppose the first diagram has a solution d1. Then we have

(ld[1)] = F (l)(d[1)] = h]

Since ] is injective, we have
ld[1 = h
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Similarly, we have
(d[1U(r))] = (d[1)] = d1r = g = k]

And again from ] being injective, weh ave d[1U(r) = k Hence, d[1 is a solution for
the second problem.

Similarly, if the second problem has a solution, then the first does too.

Corollary A.13. Let (L1, R1) be a lifting system on X and (L2, R2) be a lifting
system on Y, and let F a U : X −→ Y be an adjunction. Then, F sends L1 maps
to L2 if and only if U sends R2 maps to R1.

B The Partial Map Category of a Tangent Cat-
egory

In this appendix we give an exposition of the partial map category of a tangent
category.

We first describe the conditions needed to obtain a restriction tangent struc-
ture on a category of partial maps. When M is a tangent display system (i.e.
the tangent functor preserves pullbacks along display maps) consisting of monics,

and A
m−−→ B is a monic, then Tm is a monic. This is because if we pullback Tm

along Tm we get T applied to the pullback of m along m, whose domain is TA
hence Tm is a monic. However, it does not follow immediately that Tm ∈M.
A further complication is that natural transformations between endofunctors
on a category do not yield natural transformations between the corresponding
endofunctors on the partial map category; the naturality square involving maps
in M must be a pullback (see section 3.2 of [11]).

Definition B.1. Let X be a tangent category. We say a stable class of monics
M is a tangent stable system of monics if

1. If m ∈M then Tm ∈M.

2. T preserves pullbacks of maps along M -maps.

3. If m ∈M then the naturality square:

TA TB

A B

p

Tm

p

m

is a pullback.

One might have expected that we axiomatize the naturality squares involving
maps in M to all be pullbacks. This is however implied as indicated by the
following theorem.
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Theorem B.2. If X is a tangent category and M a tangent stable system of
monics, then Par(X,M) is a restriction tangent category. If X is a Cartesian
tangent category, then Par(X,M) is a Cartesian restriction category.

Proof. We will sketch the proof.

T ′

 A

X Y

m f

 :=

TA

TX TY

Tm Tf

As maps in Par(X,M) are equivalence classes, we need to show this definition
is well defined. If (m, f) ∼ (m′, f ′) then there is an isomorphism α between the
domains of m and m′ such that both triangles in the following commute:

A B

X Y

m

α

f ′

m′
f

As functors preserve isomorphisms T (α) then witnesses T (m, f) ∼ T (m′, f ′).
Next, the naturality squares are proved by showing that each of the naturality

squares involving a tangent structural transformation (p, l, c, 0,+) and anM map
is a pullback. This actually follows from the fact that p has this property and
then applying the pullback pasting lemma (by pasting p appropriately). Finally,
we then apply Proposition 3.2 of [11] to show that the natural transformations
lift to Par(X,M).

The required diagrams are pullbacks is relatively straightforward if long, and
follows from the proof that the pullbacks involve total maps.

C Very brief introduction to SDG

Let E be topos with a ring R. We consider WeilR, the category of Weil algebras
over R. There is a functor

D( ) : R-Weilop −→ E

Suppose a Weil algebra is presented as R[x1, . . . , xn]/I and we choose a finite
set of polynomials p1, . . . , pk that generate I; this is possible as Weil algebras
are finitely generated. Then define the spectrum 5 by:

D(U) := {(a1, . . . , an) ∈ Rn | ∀k.pk(a1, . . . , an) = 0}

Sometimes D( ) goes by the name Spec:

Spec(U) := D(U)

5We used Spec( ) in the above writeup.
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For example

D(W 1) = D(R[x]/(x2)) := {d ∈ R | d2 = 0}

Given a homomorphism of Weil algebras U
f−−→ V where U has n generators

and V has m generators, let (b1, . . . , bm) ∈ D(V ). For each generator xi of U ,
f(xi) is a polynomial (of V ). Let ai := f(xi)(b1, . . . , bm).

D(f)(b1, . . . , bm) := (a1, . . . , an)

This is well defined. A map U
f−−→ V on presentations is a map R[x1, . . . , xn]/IU

f−−→ R[x1, . . . , xm]/IV . This must arise from a map f̂ : R[x1, . . . , xn] −→
R[x1, . . . , xm]/IV that sends p ∈ IU to 0 mod IV . In turn this means that

f̂(p) ∈ IV . Let (b1, . . . , bm) ∈ D(V ). In particular, f̂(p)(b1, . . . , bm) = 0. But

f̂(p)(b1, . . . , bm)

= f̂(
∑
α

cαx
α)(b1, . . . , bm)

=
∑
α

cα(fx1)α1(b1, . . . , bm) · · · (fxn)αn(b1, . . . , bm)

=
∑
α

cα(f(x1)(b1, . . . , bm))α1 · · · (f(xn)(b1, . . . , bm))αn

=
∑
α

cαa
α1
1 · · · aα

n

n = p(a1, . . . , an)

Then define an action

E ×R-Weil
⊗∞−−−→ E

Where X ⊗∞ U := [D(U), X] on objects and f ⊗∞ g := [D(g), f ] on arrows.
This is clearly a bifunctor as D( ) is a functor. It is also a monoidal action: note
that D(U ⊗ V ) ' D(U)×D(V ) ∈ E (see [34] 3 in 2.1.2).

The microlinear spaces of E are those objects M for which M⊗∞(limiUi) '
limi(M ⊗∞ Ui) for every connected limit limiUi of weil algebras.

Then

Proposition C.1. For any topos E and any ring R, Microl(E) is a coherently
closed tangent category with all limits, and the tangent bundle is defined by
TM ≡ [D(R[x]/(x2)),M ].

However, this is not satisfying. The image of D need not be microlinear, nor
does R need to be microlinear, and thus the most basic space for assembling
differential geometry may not be microlinear!

A topos E is called smooth (with respect to R) when the following canonical
map

W
α−−→ R ⊗∞W := [D(W ),R]
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is an isomorphism for each Weil algebra W . If W is presented as W '
R[x1, . . . , xn]/I then α arises by considering α̂ : R[x1, . . . , xn] −→ [D(W ),R]
which sends a polynomial p to the function which evaluates p on D(W ). This
map passes to the quotient, since any p ∈ I is 0 on any element of D(W ).

A consequence of the smoothness assumption is:

W1 ⊗W2 ' R ⊗∞ (W1 ⊗W2) ' (R ⊗∞W1)⊗∞W2 'W1 ⊗∞W2

The following is then immediate

Proposition C.2. The microlinear spaces of a smooth topos E are a cartesian
closed, representable tangent category with all limits where R is microlinear and
for each Weil algebra W , D(W ) is microlinear.

In Microl(E) the differential objects are precisely the Euclidean R-vector space;
that is, vector spaces that satisfy the Kock-Lawvere axiom: [D(W1), V ] ' V ×V .
One can formulate the notion of manifold modelled on Euclidean R-vector spaces.
Kock showed the following in [32]

Proposition C.3. Synthetic manifolds are microlinear.
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